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The excluded volume effect in polymers 
S. G. WHITTINGTON? 
Department of Chemistry, University of Toronto, Toronto, Canada 
MS.  received 2nd September 1969 

Abstract. A series of coupled simultaneous difference equations is derived 
relating the hierarchy of density functions for a self-avoiding walk. By a 
suitable closure approximation, in which a doublet density function is approxi- 
mated by a product of singlet density functions, we derive the basic self- 
consistent field equation of Edwards. The  relationship of these equations to 
Sykes' counting theorem is discussed. 

1. Introduction 
The self-avoiding random walk on a lattice or in free space has long been recog- 

nized as a useful model of the configurational properties of polymers. The  self- 
avoiding condition introduces the difficulty of long-range correlation which makes 
mathematical treatment of the model very complex. A recent series of papers 
(Edwards 1965, Reiss 1967, Torrens 1968, Yamakawa 1968) which attempt to treat 
the problem by self-consistent field methods have produced a variety of results 
and the approximations introduced in these treatments are not always clear, In  
this paper we shall derive Edwards' self-consistent field equation by a new route 
in which the approximations are well defined and we shall point out the relation- 
ship between this equation and those appearing in the graph counting technique 
of Sykes (1961). 

2. Theory 
Although Edwards' treatment was directed towards the walk in continuous space, 

we shall confine our attention to walks on a regular lattice in order to draw compari- 
sons with the work of Sykes. We choose the cubic lattice as an example, though any 
other lattice can be treated in the same way. 

Consider an unrestricted random walk on the cubic lattice, with lattice vectors 
of length h. Let the probability that a walk starting at the origin reaches the point 
(x, y ,  z )  after n steps bepO(x, y, z ,  n). We can immediately write down the difference 
equation. 

p ' ( x , y , ~ , n + l )  = ( 1 / 6 ) C p 0 ( x - h , y , z , n ) + p o ( x + l ~ , ~ ~ , 2 . , ~ ) +  ... 
+ p O ( x , y ,  x + h ,  4). (1) 

Using the difference notation 

and writing 
A,,pO(x, y ,  X, n) = (po(x-h,  y ,  2, s) - 2po(x, y ,  z ,  a) +pO(x + h,  Y, X, n)}/h2 

i12 = 4Tz: + A,,, + A,, 

PO(,, y ,  X, 12 + 1) -p0(x,  y ,  X, 11) = (hz/6)A2p0(~, J', X, 12) 
we obtain 

which is a difference equation corresponding to the free-space equation 

apo/an = C;;i2po (3 ) 
and the solution is the standard Gaussian density function. 

t S o w  at Unilever Research Laboratories, The Frythe, Welwyn, Hertfordshire. 
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Let us now apply similar arguments to the self-avoiding walk. Let p f x ,  y ,  x, n) 
be the probability that a self-avoiding walk which starts from the origin reaches 
point (x, y ,  x )  after n steps. I n  writing down a difference equation analogous to 
equation (1) we must take account of the probability that the point (x, y ,  x) has 
not been reached at a previous stage, conditional on the point reached at the nth 
step. T h e  appropriate equation is then 

1 n - 1  

[ m - 0  
P(X,Y, 2, a+ 1) = A p ( x - h , y ,  Z, .) 1 - c p ( x , y ,  2, mlx-h , y ,  x, E) 

where A is chosen so that 
2 p ( x , y ,  x, n+ 1) = 1. 

X , Y , S  

We can rewrite equation (4) in terms of appropriate doublet density functions p,, 
giving 

p ( x , y , x , n + l )  = A ... + p ( x , y , z + h , n )  

- (P , (X ,Y ,  x, m; x - h , y ,  2, a>+ a ' '  

m 

+pz(x,  y ,  2, m; x, y ,  + h,  .)} * ( 5 )  I 
This  equation is exact. 

function p ,  to triplet density functions p,, a typical equation being of the form 
In  the same way we can derive a set of equations relating the doublet density 

p , ( x - h , y , x , n ; x , y , z , m )  = B p z ( x - 2 h , y , x , n - 1 ; x , y , x , m ) +  ... [ 
+pz(x -h , y ,  x+h, n -  1; x , y ,  2, m) 

- 2 {p3(x -2h ,  y ,  x, n -  1; x , y ,  2, m; x-h, y , x ,  i)+ ... 

+p, (x -h , y , x+h ,n -  1; x , y , x , m ; x - h , y , x ,  i)} . ( 6 )  

Similar equations can be written for p ,  in terms of p ,  and p ,  terms, so that we 
obtain a series of linked simultaneous difference equations, which can only be 
solved by adopting a closure approximation at some stage. This series of equations 
is analogous to the Born-Green-Yvon hierarchy in the statistical mechanical theory 
of dense gases (see e.g. Hill 1962). 

An equation analogous to Edwards' equation is obtained if we assume that 

t 

I 

p d x ,  y ,  x, m; t ,  r l ,  5 ,  P )  = p(., Y ,  Z, mlp(t, 7 , 5 ,  II.) ( 7 )  
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which is equivalent to replacing the conditional probabilities by absolute prob- 
abilities in equation (4). With this assumption, and reverting to difference 
notation, we obtain 

-p(., 3’9 C’ 1 2 )  1 p(., 3’, :, 41 (8) 
m 

\\here n-e neglect the small term involving h2A2p C p .  Equation (8) is analogous 
to Edn ards’ basic self-consistent field equation. The  approximation of replacing 
a doublet density function by a product of two singlet density functions is clearly 
not valid in general since it assumes that the behaviour of two segments of the walk 
is independent.? 

Reiss (1967) has proposed an alternative closure approximation in which he 
rites 

pz (x , y ,  x, m; t ,  1 7 7 5 ,  P )  = p ( x , y ,  x, mlp( t -x ,  q - y ,  5-2, P - ” ) .  (9) 

This condition is exact for an unrestricted random walk. Combining this with 
equation (5) we obtain 

1 

This closure approximation suffers from two disadvantages; (i) that interactions 
between the first m steps and the second (n-m) steps of the walk are neglected 
and (ii) that the correction terms refer to the probability of closing a loop at the 
origin after (n-m) steps, instead of to the probability of closing a loop along the 
walk. It is well known that the n-dependence of these two closure probabilities are 
of the same form, but that the probability of closing a loop of n steps at the origin 
is higher than the probability of closing a loop of n steps along the walk. Both of 
these disadvantages have the effect of making the correction term too large and 
hence of overestimating the excluded volume effect. 

3. The relationship to graph counting methods 
T o  investigate the relationship of equation (5) to the graph counting approaches 

of Sykes (1961) and others we define the number of self-avoiding walks which 
reach (x, y ,  x) after n steps as N,(x, y ,  2) and the total number of walks of n steps 
as C, so that 

N , ( x ,  Y ,  x) = C,p(x, y ,  2, .). (11) 
Let Mmn(x, y ,  x ;  5, q ,  5) be the number of walks which reach (x, y ,  z )  after m steps 

t This approximation has been criticized by Reiss (1967) who claims that it is “the corre- 
lation implicit in the retention of a pair distribution function not satisfying a superposition 
approximation which is responsible for the divergent behaviour of the mean-square end-to-end 
distance”. However p z ( r ,  m ;  3, n) # p ( r ,  m)p(s, n) for an unrestricted random walk, so that 
this is not a sufficient condition for divergent behaviour. Edwards’ calculations suggest that 
it is not a necessary condition. 
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and ( E ,  7, 5 )  after n steps. Then equation (5) becomes 

A - n + l ( ~ , y ,  Z )  = Nn(x-h ,y ,  z)+ ..- + N n ( x , y ,  Z+h) 

- 2 {Mmn(x, y ,  X ;  x - h ,  y ,  2) + 

+Mmn(x,y, z ;  x , y ,  x+h)}.  (12) 

- 
m 

Now each of the walks in the term under the summation will give rise to one walk 
with an intersection at ( x ,  y ,  z )  at the next step. These walks with one intersection 
are referred to by Sykes as tadpoles and we can write 

N n + l ( x , y ,  Z )  l vn(x-h ,y ,  x)+ * a *  + N n ( x , y ,  x + h ) -  2 ZTm,n-m(x,y, 2) (13) 
m 

where Tm,n-m(x ,  y ,  z )  is the number of tapoles with a stem of m and a loop of 
(n-m), the stem joining the loop at ( x ,  y ,  z ) .  

Summing over (x, y ,  z )  we obtain 

where 

This is Sykes’ equation (1) except that he forbids walks with immediate reversals 
and we use ZT,, n for his polygon term. The  number of tadpoles can be expressed 
in terms of dumbells, figure eights and theta graphs (Sykes 1961). 

In  order to point out the relationship to the approach of Wall and Whittington 
(1969) we define the generating functions 

and 

X . Y , Z  

,Combining equations (13), (15) and (16) we obtain 

Gn+, = R G n -  1 Hm*n-m 
m 

where g is defined as ( xCh + E -  + Ph + /3-h + yCh + y -  ’). The  equation of Wall and 
Whittington (1969) can be obtained if we make the approximation that 

Hm,n-m(x,P, Y )  = an-m(m)Gm(x,P, Y )  (18) 
an-,(m) is the number of ways of closing a loop of (n-m) steps. Clearly this quan- 
tity depends on the length of the stem attached to the loop and a,-,(m) is a de- 
creasing function of m, for (n-m) fixed. The  values of an_,(m) can be obtained by 
taking proper account of theta graphs and other contributing structures. It is 
interesting to notice that dumbells and figure eights do not appear in this treatment. 
Although this treatment is related to the closure approximation of Reiss, the dis- 
advantages of his method are overcome by taking account of theta graphs, etc., in 
the calculation of the an-  m(m). 

4. Conclusions 
We have developed an exact hierarchy of equations to describe the singlet, 

.doublet and higher density functions for a self-avoiding walk on a cubic lattice. 
By a suitable closure approximation we have derived Edwards self-consistent field 
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equation and we have demonstrated the relationship between this approach and 
certain graph-counting treatments of the problem. The  above treatment can easily 
be extended to other lattices and to the continuum. 

The  series of coupled difference equations can be solved in higher order approxi- 
mation by closure at the p,, p ,  or higher level. This gives rise to a well-defined 
series of approximations to the solution of the self-avoiding walk problem. However, 
at the moment, all except the first order approximation (that of Edwards) appear 
to be analytically intractable and recourse to numerical solution appears to be 
necessary. 
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